
J .  Fluid Mech. (1965), vol. 23, part 1, pp .  129-144 

Printed in Great Britain 
129 

On the stability of steady finite amplitude convection 

BY A. SCHLUTER, D. LORTZ AND F. BUSSE 
Institute of Theoretical Physics, Munich University 

and Institute for Plasma Physics, Miinchen-Garching 

(Received 29 March 1965) 

The static state of a horizontal layer of fluid heated from below may become 
unstable. If the layer is infinitely large in horizontal extent, the Boussinesq 
equations admit many different steady solutions. A systematic method is 
presented here which yields the finite-amplitude steady solutions by means of 
successive approximations. It turns out that not every solution of the linear 
problem is an approximation to the non-linear problem, yet there are still an 
infinite number of finite amplitude solutions. A similar procedure has been 
applied to the stability problem for these steady finite amplitude solutions with 
the result that three-dimensional solutions are unstable but there is a class of 
two-dimensional flows which are stable. The problem has been treated for both 
rigid and free boundaries. 

1. Introduction 
When a horizontal layer of fluid is heated from below, thermal expansion 

causes a density gradient opposite to the direction of gravity. In  cases where the 
temperature gradient exceeds a certain critical value the static state of the fluid 
becomes unstable because the buoyancy force is sufficient to overcome the 
dissipative effects. It is well known that the resulting cellular convective flow is 
not uniquely determined by the equations of motion and the boundary conditions 
if the layer is infinite in horizontal extent. An infinite degeneracy was first found 
in the early linear theories which apply only for infinitesimal flow amplitude. How- 
ever, Malkus & Veronis (1 958) have shown for special solutions that the degeneracy 
persists for finite amplitude solutions. They showed that flows with rectangular 
or hexagonal cell pattern are finite amplitude solutions and that their number 
is infinite because the ratio of the side lengths of a rectangle is a free parameter. 

As important as the non-linear effects is the influence of the boundedness of the 
layer in horizontal extent. However, if the horizontal length of the layer is large 
compared to its thickness, the influence of the vertical side walls ought to be 
negligible at  points far away from the walls. 

It appears that a stability theory is needed to explain why one or the other 
flow is preferred. If one recalls the mathematical difficulties that arise in the 
stability theory of simple flow in a channel it seems at first hopeless to apply the 
usual stability theory here. The steady-state solutions of finite amplitude are not 
even known exactly; however, the flows considered have relatively small ampli- 
tude. This enables us to treat the stability equations with the aid of successive 
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approximations similar to those Malkus & Veronis (1968) used. At the same time 
we generalize the method of Malkus & Veronis for the steady state by considering 
the whole manifold of solutions. Furthermore, we treat the problem for both 
rigid and free boundaries. 

2. The fundamental equations 
Conservation of mass, momentum, and energy are described by the equation 

of continuity, the Navier-Stokes equations in the Boussinesq-approximation, 
and the heat equation, respectively, or 

aiui = 0, 

atui+uiajui = -p i la ip-  (p/po)ghi+vAui, 

a,T+ujaiT = KAT, 

where we have used the summation convention and the notation 

aj = alaxj, a, = apt  ( j  = i ,2 ,3 ) ;  

hi is the unit vector with direction opposite t o  the gravity acceleration vector, 
which is normal to the layer. All other symbols have their usual meaning. 
Suppose the bottom of the layer is held at the temperature To and the top at the 
temperature Tl. Letting d be the depth of the layer we write the temperature 
in the form 

where the first term with ,4 = (To - T J / d  describes the temperature distribution 
in the static state and 8 is the deviation from the linear distribution. The funda- 
mental equations must be supplemented by an equation of state which we 
approximate by 

Thus we arrive at the well-known system of equations 

T-To = -/3xihj+8, 

p = po[ l -a(T-TO)] .  

aiui = 0, 

a,,ui + Ui a i t b ,  = - ai G +  agehi + v Aui, 

a,e+ujaje = /3ujhj+KAe, 

G = p/po f gx Aj - @ q X k  A, xj hi; 
a, g, v, K are assumed to be constants. To get a dimensionIess form of the equations 
we set 

This yields, after dropping the primes, 

Ui = KUi/d ,  8 = lJKe'/CIgd3, t = d 2 t ' / K ,  Xi = d X i ,  w = K2G'/d2. 

aiuj = 0, 

at ui + ui aj ui = - ai 55 + Peh, + P AUi, 

a, e+ uj ai e = hi -+ he. 

P = v/K is the Prandtl number and R = ag/3d4/v~ is the Rayleigh number. 
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Introducing the four-dimensional differential operator 
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the four-dimensional vector 

and the matrix differential operator 

we can rewrite our equations in the form 

with the sum convention on Greek subscripts which run from 0 to 3. The stationary 
system has the form 

I v, a, 21, = D,, v, - a, 5, 
aAv, = 0. 

If we superpose infinitesimal disturbances a, onto the steady functions v, we 
derive from (2.1) the stability equations 

where we have introduced a growth rate u by 

ate, = ce, 
because the coefficients of the special linear system (2.3) are time-independent. 
v, is unstable if equation (2.3) has solutions for positive v. 

3. The boundary conditions 
We assume that the layer is infinite in horizontal extent and require that all 

functions are bounded as x2 + y2 + 00. On the horizontal bounding surfaces the 
vertical component of the velocity must vanish, and since we require that the 
temperature has fixed values on the boundaries we have the further condition 
that the temperature deviation 8 must vanish. 

Since we are concerned with a viscous fluid a t  rigid boundaries the horizontal 
components of the velocity must also vanish. For the so-called 'free' case 
absence of stress requires that the normal derivative of the horizontal velocity 
components vanishes. So we have two sets of boundary conditions 

u . = e = o  at rigid boundaries, 

ui hi = 8, Al eiik hi uk = 6 = 0 at free boundaries, 

for the steady state as well as for the disturbances. 
9-2 
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4. Perturbation theory in the vicinity of R = R, 

for small values of R - R,, which means small amplitude convection. 

perturbations, the unperturbed equations are 

We try to solve the stationary equations (2.2) and the stability equations (2.3) 

Regarding the quadratic terms in (2.2) and the interaction terms in (2.3) as 

where the superscript on DfA means that R is replaced by So). The equations are 
linear with constant coefficients and their solutions are well known (see, for 
instance, Pellew & Southwell 1940). Solutions of the non-linear equations (2.2) 
can be approximated by the formal expansions 

R = R(O) + ER“ + e2H2) + . . . , 
v, = €V(:) + E 2 V y  + €32):) + . . . , 

(4.3) 

(4.4) 

where the amplitude E is a small parameter. If we substitute these series into the 
non-linear system (2.2) we get a set of inhomogeneous equations which are in 
general not solvable. We determine the R(”) from certain existence conditions for 
the solutions of the inhomogeneous equations. Since R is an externally given 
parameter, equation (4.3) defines E .  

We substitute the series (4.3), (4.4) into the stability equations which we regard 
as an eigenvalue problem for the growth rate 0-. Since E is the perturbation para- 
meter given by the steady non-linear solutions, we can apply the ordinary tech- 
niques of perturbation theory to the disturbance equations writing 

0- = d O ) + € d 1 ) + € 2 d 2 ) +  ...) (4.5) 

G, = 5($ + €8;~ + €26:’ + . . . . (4.6) 

5. The unperturbed problems 
Equation (4.2) with do) = 0 is the same as (4.1), so we need only discuss the 

more general (4.3). Let v: and v: be any functions which satisfy 8, v: = a, vz = 0 
and the same boundary conditions as v,. We define the weighted scalar product 

where ( ), means the average over the entire layer. Then for the free as well as for 
the rigid case the operator D;? has the following property of self-adjointness 

(v:, OF, v:) = R(0)P[(8’uj hj) ,  + ( 8 ” ~ ;  Aj), + (u; Au;),] + P(@ As”), 
= (v:, v;) 

from which we can immediately conclude that do) is real. 
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Referring to Pellew & Southwell (1940) the vertical and horizontal dependences 
of the solutions of the linear equations (4.2) can be separated by assuming 

A2 52) + a25:) = 0, 

where a is the wave-number, and A2 = A - 8, A, a, A, is the two-dimensional 
Laplacian operator in the horizontal plane. The neutral curve do) = 0 divides 
the (a2,Rco))-plane into a stable and an unstable region. On the neutral curve 
there is a minimum value R(O) = R, and a corresponding a,. The first-order 
disturbances have the highest growth rate do) = 0 if their wave-number is the 
same as that of the steady solutions. We shall prove that these disturbances will 
lead to the instability of three-dimensional steady solutions. With do) = 0 the 
two systems (4.1) and (4.2) become identical and we rewrite them explicitly: 

(5.2) 

(5.3) 

0 = R(o)u;il)A, + A&), 

0 = - a, 63') + P8(l)Ai + P AuLJ'. 

We first notice that h, the vertical component of the vorticity, vanishes, for 
if we take the curl of (5.3) we get 

Ah = 0, h hi eijrc a, u:?), (5.4) 

with h = 0 or A, a, h = 0 on the boundaries. By multiplying (5.4) by h, averaging 
over the whole layer, and integrating by parts, we see that h = 0. (In the free 
case h could be a constant if the entire layer were rotating about a vertical axis, 
a case we do not want to discuss here.) 

The velocity thus satisfies the relations 

hi Eiik a, = a, up = 0. (5.5) 

uy = Si ,(I) (5.6) 

By introducing the operator Si E ai a, A, - hi A we write the general solution of 
(5 .5)  in the form 

with dl)an arbitrary function. (In the free case we could add a constant horizontal 
vector to our solution (5.6). But this would correspond to an uninteresting 
uniform horizontal translation.) By operating with Si on (5.3) we find 

or 

Then equation (5.2) yields 
(A3 - R(0)A2) 80) = 0 (5.7) 

If a co-ordinate system with the origin in the middle of the layer and the z-axis in 
the direction of A is introduced, the solution of (5.7) has the following form (see 
Pellew & Sout,hwell 1940; Reid & Harris 1958): 

,(I) = ui(r)f(z) (j'(1) = A2t+) = w(r)  g(& (5.8) 
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A, w = - a2w, (5.9) 

f (2) = A,coshq,z, g(x )  = B,coshq,x, (5.10) 
3 3 

n=l n = I  

where r is the two-dimensional position vector in 
rigid case we have for the lowest value of R@): 

U, = 3.117, 

q1 = i .3.974, 

.Rho) = 1707.762; 

q, = 5.195-i.2.126, 

A ,  = 1, 
Bl = 650.68, 

A ,  = - 3.076.10-2+i.  5.194 

B, = 39.277 + i. 0.433, 

In the free case 
R(O) = (n2+a2)3/a2, a, = n/ $2 ,  

the horizontal plane. In the 

q 3  = 

10-2, A,  = A;; 

B, = BZ. 

q, = ni, A ,  = 1, A ,  = A,  = 0, B, = (n2+a2)2, B, = B, = 0. 

We write the solutions of (5.9) in the form 

i N  
w = 2 C,w,, w, = exp (ik,.r), (5.11) 

n.=-N 
-n+o 

with lknI2 = a2. 

In  order that (5.11) be real, there must be a k-, = - k, with C-, = (7: for each k,. 
With the normalization 

the final form of the first-order solutions is 

(5.12) 

A2 + N  

A2 

vlf) = ( 6i) dl), v(*) = f ( z )  Z: C, w, for the steady motion, 

fif)  = (&$) fi(1), 8) = f ( z )  

n=--N 

b, w, for the disturbances. 
n 

The last expression is a sum over the entire manifold of solutions w,. 

6. Solutions of the second order 
A t  second order the inhomogeneous equations 

vf) - a $9 = - R(1)A 
a,vy = 0 

must be satisfied, where A,, is the constant matrix 
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Forming the special scalar product, defined in (5.1), with the equation (6.1) and 
the functions vC)* of the first order, we derive the existence condition? 

- R(l) {v:)*, A,, v?') + (vC,l)*, v~)a,v',") = (v$')*, DL~P,)~)) - (z):)*~ t3,iscZ)) 
- ( ~ ( 2 )  D(O)v(l)*) = ( ~ ( 2 )  D(O)v(U-a @*) = 0. (6.3) K 9  K A  A K 9  K h  K K 
- 

We have used the facts that DF, is self-adjoint in the defined sense and the terms 

(vy-, aK a@)), (v',"' a,ZP*> 

vanish due to the boundary conditions and the continuity equation. 
For further reference we show that 

(@' K ? I \  2, a h K  v'"") = { v y ,  u. 3 3 K  a.v(l)") = 0 ,  (6.3) 

where u, = 8, v has vanishing normal component on the boundaries and the first 
order functions W ~ Y ,  vC,l)" may have different horizontal dependences. By partial 
integration we obtain 

( v y ,  u, a, v',"') = ( v y ,  (8,. v) a, vy"') = (WSi v y  , ai vc,l)"). 

This vanishes because, without summation over K 

8 .  v(l)'a. &)" = (8. ~$1)') a. &)" - qa, v',"') a, a, A, ~ y ) "  
J K  J K  3 K  3 K  

+ (a, A, v',)') A@)'' + ( aj ~2)') a, A, a,. v(,)rr 
= (8, p' a. v(l)n - (aj 8. v(l)rr = 0. 

) 3 K  3 K  

The last two terms cancel because of the relation A2vi? = -a2v$? and because 
different first-order solutions have the same vertical dependence. 

The second term of (6.2) is of the form (6.3) and therefore vanishes, so the 
coefficient of in (6.2) is 

(UP)*, A,, up) = P(B(1)*uy)Aj), 

= - P(u$"Au~~)*), = P([ai uY)] 8, UY)*), ?= 0. 

R(l) must therefore vanish. 
The second-order equations of the stability problem become 

D(0) f j (2 )  - a G(2) = dl) f jP) + vpa, p + 81) a v(,), ah 8:' = 0 Kh A K A I  

and their existence condition is 

d') (@)*, fi',)) + (a:)*, 52) a, v y )  + (@*, vjll) a, gp) = 0, 

analogously to (6.2). The triple products have the same form as in (6.3), hence 
they are also zero and the existence condition is 

d1) = 0. 

Consequently, i t  is found that in the second order no steady solution is preferred. 
This result also holds for the unsymmetrical case of one free and one rigid bounding 

t We should recall that the solutions w'," are real. The asterisk is introduced only because 
the conclusions are also valid for complex functions w:'. 
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surface, which contradicts Malkus & Veronis (1958) who conclude incorrectly 
that in the unsymmetrical case hexagons are preferred. 

In order to find higher approximations for the problem we must construct a 
particular solution of (6. I), which we rewrite explicitly for R(l) = 0 

If we take the vertical component of the curl of the equation (6.5) and use the 
identity 

we get on the right-hand side 
E{ltl Ak 8i 0 

eiklA,alUy)a,jU$') = €:ikl[(hka,(ajh,a,-hjA)V"') aj(aiA,a,-hiA) ?z'(')] 

= - Eikl Ak(al ~ v ( 1 ) )  a, A, a, A, a, v(1). (6.6) 
The rest of the terms in the square brackets are symmetrical in i, k or i, 1 and 
hence cancel because of the antisymmetry of eikP Using the properties 

of the first-order functions, one easily verifies that the last term of (6.6) vanishes. 
Thus Eikrhk a,Au$') = 0 and with aju:?) = 0 we can derive the velocities from a 
potential by u$,) = Sid2) in the same way as for the first-order functions. By 
operating with - Si on the equation (6.5), 

and finally by eliminating O(,) or ui2)Aj respectively 

vfl) = f (2) w ( r ) ,  A, w = - a2w 

PA, o ( 2 )  + P A ~ ~ ~ ) A ,  = - si UP) 3 a, z~(il), 

(A3 - R(0) A ) u(?)A = - P-1ASi a, ~ $ 1 )  - A, up) aj @), 2 3 ,  

(A3 - ~ ( 0 )  A ) 8s = p-1~(0) si up ai up + A ~ ~ W  a.  ecu. 
2 3 3  

If we write the second-order solutions in the form 

then p ,  q satisfy the equations 

with the boundary conditions 
either p"' 

P = P" = ior piv} = 0 

and 

where the primes indicate vertical differentiation. With the form (5.12) of the 
first-order solutions, the inhomogeneous terms in (6.8) become 

X [f "f + ( 1 - 24,m)f'Y'  - 'a2( 1 - $nm)f 'f I, (6.9) i 
a, uy) = - 

u(?) a.  e(1) = - 

c,, c, w, wm a4( 1 + #nm) 

c, c, W ,  W ,  a,( #nm f ' g  - fq'), 

n, m 

3 3  
12, m 

with the abbreviation 
4 n m  E (kn- km)/'a2* 
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(6.8) has a solution of the form 

Since f and g in (6.9) are sums of hyperbolic functions according to (5.10), we 
finally obtain the formulas 

3 a2 sinh (q,  + 4,) z sinh (q  - q ) z 
+PYA Fq($nm,~)  = - C 2 q,($n,,, A,B,-A,B,) 

v p =  1 D- 

(6.11) 

The second terms are solutions of the homogeneous part of (6.8) which must be 
added to satisfy the boundary conditions. The complex coefficients b,, d ,  are 
uniquely determined because the homogeneous boundary-value problem has no 
antisymmetrical solution if R(O)is near RLo). It turns out that the coefficients b,, d, 
are zero in the free case. The case of rigid boundaries is discussed in the appendix. 
Since the calculation for the disturbances is quite analogous we write the second- 
order solution 

where G and F can be derived from Fp and Fq by differentiation (cf. equation (6.7)). 

7. Eigenvalue perturbations to the order c3 

consider the third-order terms in the equations (2.2) and (2.3) 
In order to find differences in the behaviour of the various steady solutions we 

D(i vf) - a, sj(3) = - 9) A &) + ~ ( 1 )  a ~ ( 2 )  + a, ~:1), K ~ A  A h K  

D O )  ~ ( 3 )  - a j33) = d 2 )  gip - R ( ~ ) A , ~  61) + vp) a, 67) + @(A) a, ,@) KA A A 

+ ,pa,  v p  + 6p) a h  vy). 

The existence conditions require that the right-hand sides of the equations be 
orthogonal to all first-order solutions which are represented by 
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<vi%*, v?)a,vf)) = (&)* E n )  @)a A A d l ) )  K = (d:A*, v~)a,fi$?) = 0, 

- R(2) (v:%*, A Kh v'") A + (v~?A*, vY) a, vP') = 0, (7.1) 

- R(2) (vlfL*, AKA fip)) + d2) (@A*, EL')) + (~lfk*, a)aAv(,) )  + ( v ~ ~ * , d ~ ) a h i j ~ 2 ) )  = 0. (7.2)  

The second term in (7.1) can be transformed by partial integration 

J 3 (@* , V, (1) aA v:~)) = (vL1A*, a, vi2)) = - (d:;L7 u p  a,~',)*) 
- - - p(@Ju(!) 3 a. i n  8(1)*)m - R(O) ( (Si ~ ( 2 ) )  uy) 8, ~ $ z * ) ~  

3 I n 
- - - p(o(2) u(!) 8. 8(1)*)m - R(0) ( ~ ( 2 )  Siuy) a, u$%*),. 

Substituting the representations (6.12) for the first- and second-order functions 
we get 

-t N 

k , I , m = - N  

- ('(#kl) (fg' f #mnf 'g)  a2P + R(o)F(#kl) 

= c ck clcmL(#kl, #mn) (wz wk wl wm)m, 

L(#kl, #mn) 

x [ -f"f- (1  + 2#mn)f"f '+  2a2(1 + #m,)f'fIa4(1 - #mn))m* (7 .3)  

The horizontal average is unequal to zero only in the following cases: 

(i) k = n (ii) I = n (iii) m = n 

1 = - m  k = - m  k = - 1  

k + n  k=k n 
k f - n .  

Let us define the matrix 

( n , m = - N  ,... - 1 , 1 , . . . ,  + N )  1 
2 L ( - 1 ,  + l ) + L ( + l ,  - 1 )  

2(L(#nm, - #nm) + L( - 4 n m ,  #nm) 

for m = & n 

+ L (  - 1, + 1)) otherwise 

Trim = T - n , m  = T n , - m ;  Trim = T m n ,  

I T n m  = 

which has the symmetries 

since 4 n m  = $mn, - 4 n m  = #-nm* 

Note further that the diagonal elements of Tnm are equal to each other. After 
dividing by Cn (7 .1)  can then be written 

1 N  
-KR(2)+- C Tn,,GZCm = 0,  with h'z Pa2((f"-a2f)2)m. (7.4) 

From the symmetries of Tnm we see that only N equations of (7.4) are independent. 

2 m = - N  

Together with the normalization condition 
N 

m = l  
c cgc,, = 

we have a system of ( N + 1 )  inhomogeneous equations, which determine the 
( N  + I )  values R(2), CTG,, . . , , C$CN. This means that the manifold of first-order 
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solutions is restricted by the non-linearities of the equations. For instance, in the 
‘regular ’ case, in which all angles between two neighbouring k-vectors are equal 
the solution is 1 1 N  c:c,=,. . .+c~c~=-,R(~)=- 2 N  

2 K N  m=l E Tim* 
The question arises as to whether further constraints arise due to the existence 
conditions of the higher orders. This is certainly a complex problem in general. 
In  the ‘regular’ case, however, there is no preferred k-vector so the N equations 
of the vth-order existence condition, v = 3 , 4 ,  ..., reduce to only one equation, 
which determines a@). Hence there is definitely an infinite number of steady 
finite-amplitude solutions, the ‘regular’ ones, and we must find conditions for 
the stability of the various solutions. 

We first restrict the class of disturbances to those whose coefficients en are 
zero except for k-vectors for which the C, are unequal to zero. Then (7 .2)  has the 
form + N  

m=-N 
Md2K’:, + T,, C z  C, ern = 0, 

(7 .5)  

where we have used relation (7 .3) .  Since Tam, is symmetrical, TnmCZC, is 
Hermitian and all eigenvalues d 2 )  are real. The system (7 .5)  has non-trivial 
solutions en if and only if the characteristic equation 

det I Md2)6,, + Tnm C;lE C,l = 0 

or 

is satisfied. The left-hand side of (7 .6 )  is a real polynomial in d2) with 2 N  real roots, 
and the coefficient of (d2))m is positive. If we subtract the ( - m)th column from 
the ( + m)th column and add the ( + n)th row to the ( - n)th, and use the sym- 
metry properties of T,, we get a matrix with zero elements for negative m, 
from which we conclude that N eigenvalues d2) are zero. 

The rest of the eigenvalues d2) satisfy the equation 

det Mz:r +2Tnm! = 0 (n,m = 1, ..., N ) ,  

or det 1 d 2 ) & n m  + 2C, C$ T,,] = 0. (7 .7)  

We show in the appendix that the matrix T,, has the additional property 

T,, > Tnn > 0 (n + m,; without summation convention), 

4QnCX,cmcZ(Tnn Trim- Tim) 

(7 .8)  

from which it follows that all two-dimensional principal minors 

of (7 .7)  are negative. Thus in the polynomial (7 .7)  the coefficient of (d2))N-2 is 
negative. Since all zeros of (7 .7 )  are real, we can then conclude by the sign rule of 
Descartes that a t  least one zero d2) is positive, because the coefficients of a(2)N 
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and d2)N-2 have opposite sign. We have thus shown that all solutions with N > 1 
are unstable. 

An exception is the case N = 1, the two-dimensional flow in the form of rolls, 
for which the polynomial (7.7) is of degree one and has only a negative root 
because the trace of Tnm is positive. In order to show that the two-dimensional 
flow is not unstable with respect to any other disturbance we have to drop our 
original restrictions on the disturbances. We go back to equation (7.2) and 
consider the case that the f l m  are unequal to zero for k,-vectors different from 
those of the steady motion. Then the horizontal average in (7.2) yields the 
diagonal elements 

a”)~+L(-$,,,$,,)+L($,,, -91,)-M+ 1, - 11, (7.9) 

while the non-diagonal elements vanish so this part of the stability matrix can 
be discussed separately. In  order that the associated determinant vanishes the 
expression (7.9) has to be zero. As will be shown in the appendix 

and hence all d2)-values are negative in that case, so for rolls the highest growth 
rate is d2) = 0. The disturbance with this growth rate turns out to be an infinite- 
simal horizontal translation of the steady motion normal to the axis of the rolls. 
This is clearly an exact solution of the stability problem with the growth rate 
zero, which we see by differentiating the steady non-linear equations. 

To complete the proof for the stability of small amplitude rolls we have to 
consider disturbances with wave-numbers d different from the wave-number a 
of the rolls. Such disturbances satisfy the first-order equations with do) not 
necessarily zero. To second order dl) vanishes due to the vertical symmetry of 
the first-order functions, if we consider the cases of symmetric boundary condi- 
tions. At third order we get non-diagonal elements in the stability matrix, if the 
condition - -  - 

k,+k,-3k1 = 0,  JkJ = d 

is satisfied, which is possible only in the case of d 2 a. If we approximate the 
values of the matrix element by taking the limit 16 - a1 -+ 0, we find in the case 
of d > a the same matrix elements as in the case d = a. Hence in this limit 
d - a -+ + 0,  the highest value of d 2 )  is zero. This means that rolls are unstable 
for a < a,, because the positive value do) of c@sturbances with a wavelength 
slightly greater than a cannot be compensated by the contribution of d2k2 to the 
growth rate (r. In  the case of d < a the non-diagonal elements vanish and in the 
limit d - a -+ - 0 the diagonal elements are of the form (7.9), which yield only 
negative values d2). Hence for a > a, the positive value do) of disturbances with 
d < a can be compensated for finite amplitude E ,  while disturbances with d > a 
have negative values do). Thus we find that a finite-amplitude roll is stable if its 
horizontal scale corresponds to a value a with a,(€) > a > a, and unstable other- 
wise. For free as well as for rigid boundaries figure 1 gives a qualitative picture 
of the stability range of finite amplitude rolls. 
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FIGURE 1. Stability range of rolls. 

8. The convective heat transport 
The difference between the total and the conduction heat transport through 

the layer is given by a = zcihj8- 8, j$.e = (ui Aj 4m, 
where the bars indicate a horizontal average. The first term unequal to zero is of 
the second order, 

H = (UY)A, 6’(1))m ( R  - R,)/R@) + . . . = (K/PR(2)) ( R  - B,.) + . . . , 
giving the initial slope of the convective heat transport curve. For the free case 
Malkus & Veronis (1958) calculated for rolls, rectangles and hexagons. From 
table 1 in the appendix one derives the following results for ‘regular’ solutions 
in the case of two rigid boundaries with KIP = 2904.4: 
rolls c;c1 = &; 

g / ( R  - R,) = (0.69942 - 0*00472P-1 + 0.00832P-2)-1: 

c*c - c*c - I. square cells 1 1 -  2 2 - 4 ,  

g/ (R - R,) = (0.77890 + 0.03996P-1 + 0*06363P-2)-1: 

hexagons c:cl = c;c2 = c,*c3 = +; 
B/(R-  R,) = (0*89360+ 0 ~ 0 4 9 5 9 P - ~ +  0*06787P-2)-1. 

In  this connexion Malkus’s ‘hypothesis of maximum heat transport ’ ( 1 9 5 4 ~ ~  b )  
should be mentioned. This states that, if there are several possible convective 
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motions, the fluid prefers the motion with the highest absolute value of heat 
transport. We prove this hypothesis for small amplitudes by showing that the 
heat transport of rolls has an absolute maximum, i.e. corresponding H2) has an 
absolute minimum. Since the diagonal elements of T,, are equal to each other 
we derive from (7.4), using inequality (7.8) and the normalization condition, 

where the equality sign is only valid for N = 1, the case of rolls. 

9. Conclusions 
We have found that not every linear steady solution is an approximation 

to the non-linear problem, but the degree of degeneracy of the finite-amplitude 
steady state is still extremely high. Exact formulae for the initial slope of the 
convective heat transport curve for a given cell pattern have been derived for 
rigid boundaries. Experiments of sufficient precision, especially with respect to 
the temperature boundary conditions, are not yet available to test these formulae. 
Our systematic stability theory yields the result that three-dimensional con- 

vection flows are unstable with respect to infinitesimal disturbances and that 
there is a class of two dimensional solutions in the form of rolls that are stable. 
Whether or not a given finite amplitude roll is stable depends on its wave length. 
The stability conclusions have been obtained at third order in an expansion in 
terms of the steady-state amplitude, so any small change in the Boussinesq 
equations being used could essentially alter the stability behaviour. This seems 
to be the reason why it is so difficult to produce the two-dimensional convection 
flows in a laboratory experiment. Stability analyses for the Boussinesq approxi- 
mation in which density is the only temperature-dependent property have been 
extended by Palm (1960), Busse (1962), Palm & Qiann (1964), and Segel(1965), 
to take into account slight dependence of the other material properties on tem- 
perature. The main conclusions are that the corresponding vertical asymmetry 
in the layer leads to the stability of the hexagonal cell pattern in a range between 
the critical Rayleigh number and a certain supercritical value, beyond which 
rolls are stable. 
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Appendix 
We calculate here the elements of the matrix T,,. For free boundaries the sums 

in the formulae (6.11) reduce to one term, because the coefficients A,, B, are zero 
except for one v. The boundary conditions are satisfied with vanishing coefficients 
b,, d,. Substituting f ,  9, P and G into the equation (7.3) we find 

x (as+ m2)2 P + 2a2( 1 + $,,) B0)[(4n2 + 2a2( 1 + $,,)) P-l+ 2(7r2 + a2)]}. 

This is a positive expression for all $nm with - 1 < $,, < 1, if the wave number 
a does not deviate very much from its critical value a,, and it is zero for $%, = 1. 
This means that the relation (7.10) is verified and according to the definition of 
T,, the inequality (7.8) holds. 

In  the more realistic case of two rigid boundaries the calculation of the second- 
order functions (6.11) is more complicated. Since the form of the first-order 
functions depends on a in this case, we restricted the calculations to the critical 
value a, of the wave-number and used the results of Reid & Harris (1958). In 
order that a solution of the homogeneous part of (6.8) has the vertical dependence 
sinh [q;($,,) 21 the 4: must satisfy the equation 

[@ - 2a2,( 1 + 4 , ~ ~  + 2a3,'O)( 1 + 4,) = 0, 

which has the roots 
4;' = 2a2,(1+ $nm) - w,{2a2#:)(1 + $nm)}', 

where w, are the three cube roots of unity: 

w1 = 1, w2 = -$(1+, /3i) ,  w3 = ~ 2 .  
The coefficients bV($,,), a,($,) are determined by the complex inhomogeneous 
equations 

yq($nm, &I = p;($, 3) = [d2/dz2- 'a:('+ $,,)I2 Fq($, 2 )  Iz=+ z= 0 

and I$($,  +) = Fi($,+) = I?:($, &) = 0, respectively. The expression 

L($nrn? - $am) 

depends in the following way on the Prandtl number P: 

L($arn, - $nm) = a4[-L($,,) P-l+ kd$nrn) Po + 4($nrn) -?'I, say- 

We computed the coefficients L, of P", which involve many complex numbers, 
on the electronic computer G 3  of the Max-Planck-Institut fur Physik und 
Astrophysik, Munchen. The results are given in table 1, which shows that the 
relations (7.8) and (7.10) hold for rigid boundaries, too. 

The unsymmetric case of one rigid, and one free boundary has been treated by 
Busse (1962) for the limit of large Prandtl number, with the same qualitative 
result for the relations (7.8) and (7.10). 
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8hwIa 

-8  
- 7  
- 6  
- 5  
- 4  
- 3  
- 2  
-1 

0 
1 
2 
3 
4 
5 
6 
7 
8 

TABLE I 

0-0 
2087.1 
3630.4 
4698.8 
5364.3 
5696.0 
5759.8 
5615.2 
5314.6 
4903.2 
4419.7 
3896.8 
3361.6 
2836.6 
2339.9 
1886.4 
1487.8 

0.0 
3125.6 
4978.4 
5885.7 
6114.1 
5873.2 
5325.7 
4597.8 
3782.2 
2947.4 
2142.4 
1400.4 
744.2 
186.5 

- 265.1 
- 608.3 
- 843.9 

61,846 
51,124 
41,658 
33,391 
26,257 
20,176 
15,067 
10,846 
7,433 
4,754 
2,736 
1,316 

434 
40 
83 

523 
1,322 

The coefficients Lv($,,,,,) for rigid boundaries. 


